Data Sheet

N-KZFS5
654397.304

Refractive Indices

<table>
<thead>
<tr>
<th>(\lambda) [nm]</th>
<th>(\mathcal{N}_{025.4})</th>
<th>(\mathcal{N}_{293.6})</th>
<th>(\mathcal{N}_{1000.0})</th>
<th>(\mathcal{N}_i)</th>
<th>(\mathcal{N}_p)</th>
<th>(\mathcal{N}_s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2325.4</td>
<td>1.61392</td>
<td>1.62058</td>
<td>1.63577</td>
<td>1.63673</td>
<td>1.64087</td>
<td>1.64649</td>
</tr>
<tr>
<td>1970.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.64922</td>
</tr>
<tr>
<td>1529.6</td>
<td></td>
<td>1.65000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1060.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1014.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>852.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65412</td>
<td>1.65803</td>
</tr>
<tr>
<td>706.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66677</td>
</tr>
<tr>
<td>656.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66570</td>
<td>1.66667</td>
</tr>
<tr>
<td>643.8</td>
<td></td>
<td></td>
<td></td>
<td>1.65711</td>
<td>1.65803</td>
<td>1.67511</td>
</tr>
<tr>
<td>632.8</td>
<td></td>
<td></td>
<td></td>
<td>1.68318</td>
<td>1.68318</td>
<td>1.69756</td>
</tr>
<tr>
<td>589.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.69756</td>
</tr>
<tr>
<td>587.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>546.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.65803</td>
<td>1.65803</td>
</tr>
<tr>
<td>486.1</td>
<td></td>
<td></td>
<td></td>
<td>1.66677</td>
<td>1.66677</td>
<td>1.66677</td>
</tr>
<tr>
<td>480.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.66667</td>
<td>1.66667</td>
</tr>
<tr>
<td>435.8</td>
<td></td>
<td></td>
<td></td>
<td>1.67511</td>
<td>1.67511</td>
<td></td>
</tr>
<tr>
<td>404.7</td>
<td></td>
<td></td>
<td></td>
<td>1.68318</td>
<td>1.68318</td>
<td></td>
</tr>
<tr>
<td>365.0</td>
<td></td>
<td></td>
<td></td>
<td>1.69756</td>
<td>1.69756</td>
<td></td>
</tr>
<tr>
<td>334.1</td>
<td></td>
<td></td>
<td>1.69756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>312.6</td>
<td></td>
<td></td>
<td>1.69756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>296.7</td>
<td></td>
<td></td>
<td>1.69756</td>
<td></td>
<td>1.69756</td>
<td></td>
</tr>
<tr>
<td>280.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.69756</td>
</tr>
<tr>
<td>248.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Internal Transmittance \(\tau_i \)

<table>
<thead>
<tr>
<th>(\lambda) [nm]</th>
<th>(\tau_i) [10mm]</th>
<th>(\tau_i) [25mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2500</td>
<td>0.660</td>
<td>0.350</td>
</tr>
<tr>
<td>2325</td>
<td>0.830</td>
<td>0.620</td>
</tr>
<tr>
<td>1970</td>
<td>0.963</td>
<td>0.910</td>
</tr>
<tr>
<td>1530</td>
<td>0.988</td>
<td>0.970</td>
</tr>
<tr>
<td>1060</td>
<td>0.999</td>
<td>0.998</td>
</tr>
<tr>
<td>700</td>
<td>0.998</td>
<td>0.994</td>
</tr>
<tr>
<td>660</td>
<td>0.997</td>
<td>0.992</td>
</tr>
<tr>
<td>620</td>
<td>0.997</td>
<td>0.992</td>
</tr>
<tr>
<td>580</td>
<td>0.997</td>
<td>0.993</td>
</tr>
<tr>
<td>546</td>
<td>0.997</td>
<td>0.992</td>
</tr>
<tr>
<td>500</td>
<td>0.994</td>
<td>0.985</td>
</tr>
<tr>
<td>460</td>
<td>0.990</td>
<td>0.974</td>
</tr>
<tr>
<td>436</td>
<td>0.986</td>
<td>0.965</td>
</tr>
<tr>
<td>420</td>
<td>0.983</td>
<td>0.958</td>
</tr>
<tr>
<td>405</td>
<td>0.978</td>
<td>0.950</td>
</tr>
<tr>
<td>400</td>
<td>0.976</td>
<td>0.940</td>
</tr>
<tr>
<td>390</td>
<td>0.967</td>
<td>0.920</td>
</tr>
<tr>
<td>380</td>
<td>0.950</td>
<td>0.880</td>
</tr>
<tr>
<td>370</td>
<td>0.930</td>
<td>0.830</td>
</tr>
<tr>
<td>365</td>
<td>0.910</td>
<td>0.790</td>
</tr>
<tr>
<td>350</td>
<td>0.790</td>
<td>0.560</td>
</tr>
<tr>
<td>334</td>
<td>0.370</td>
<td>0.080</td>
</tr>
<tr>
<td>320</td>
<td>0.020</td>
<td>0.000</td>
</tr>
<tr>
<td>310</td>
<td>0.000</td>
<td></td>
</tr>
<tr>
<td>300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td></td>
<td></td>
</tr>
<tr>
<td>270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Relative Partial Dispersion

<table>
<thead>
<tr>
<th>(\Delta \mathcal{P}) from the normal line</th>
<th>(\Delta \mathcal{P}_{G1})</th>
<th>(\Delta \mathcal{P}_{C1})</th>
<th>(\Delta \mathcal{P}_{C2})</th>
<th>(\Delta \mathcal{P}_{s1})</th>
<th>(\Delta \mathcal{P}_{d1})</th>
<th>(\Delta \mathcal{P}_{F1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Delta \mathcal{P}_{G1})</td>
<td>0.0248</td>
<td>0.0115</td>
<td>-0.0021</td>
<td>0.0060</td>
<td>-0.0286</td>
<td></td>
</tr>
<tr>
<td>(\Delta \mathcal{P}_{C1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \mathcal{P}_{C2})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \mathcal{P}_{s1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \mathcal{P}_{d1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Delta \mathcal{P}_{F1})</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_{30-60{^\circ}C}) ([10^{-5}/K])</td>
<td>6.4</td>
</tr>
<tr>
<td>(\alpha_{20-30{^\circ}C}) ([10^{-5}/K])</td>
<td>7.4</td>
</tr>
<tr>
<td>(T_f) ([^\circ]C)</td>
<td>584</td>
</tr>
<tr>
<td>(T_f) ([11{^\circ}]C)</td>
<td>593</td>
</tr>
<tr>
<td>(T_f) ([2{^\circ}]C)</td>
<td>739</td>
</tr>
<tr>
<td>(c_p) ([g/(g*K)])</td>
<td>0.730</td>
</tr>
<tr>
<td>(\lambda) ([W/(m*K)])</td>
<td>0.950</td>
</tr>
<tr>
<td>(AT) ([^\circ]C)</td>
<td>648</td>
</tr>
<tr>
<td>(p) ([g/cm^2])</td>
<td>3.04</td>
</tr>
<tr>
<td>(E) ([10^{16}N/mm^2])</td>
<td>89</td>
</tr>
<tr>
<td>(\mu) ([g/cm^2])</td>
<td>0.243</td>
</tr>
<tr>
<td>(K) ([10^{-6}mm/m^K])</td>
<td>3.57</td>
</tr>
<tr>
<td>(HK_{1200})</td>
<td>555</td>
</tr>
</tbody>
</table>

Color Code

\(\lambda_{254} / \lambda_s = 37/32 \)
\(\text{Color Code} \)

Remarks

Suitable for precision molding, step 0.5 available

Temperature Coefficients of the Refractive Index

<table>
<thead>
<tr>
<th>(^{[\text{C}]})</th>
<th>(\Delta n_{\text{abs}}/\Delta T) ([10^{-6}/K])</th>
<th>(\Delta n_{\text{rel}}/\Delta T) ([10^{-6}/K])</th>
</tr>
</thead>
<tbody>
<tr>
<td>-40/-20</td>
<td>4.2</td>
<td>5.3</td>
</tr>
<tr>
<td>+20/+40</td>
<td>4.2</td>
<td>5.3</td>
</tr>
<tr>
<td>+60/+80</td>
<td>4.4</td>
<td>5.4</td>
</tr>
</tbody>
</table>

As of 01-Feb-2014, subject to change