Zinc Sulfide is the most suitable material for broadband infrared windows, domes and optics. No other material offers this combination of optical properties and environmental resistance. SCHOTT has developed a ceramic process to produce polycrystalline Zinc Sulfide, IRC-1. IRC-1 has significantly improved optical and mechanical performance compared to CVD processed material.

IRC-1 is the material of choice for mid and long wave IR applications

Advantages
- IRC-1 performs with high transmission between 3–12 µm
- Fine grained and homogenous microstructures
 - Higher Strength and Hardness
 - Lower cost finishing
 - Improved results from deterministic finishing
- Ceramic process allows the production of near net shape dome blanks and curved window blanks
 - Reduces processing time and associated costs
 - Reduces production complexity

Forms of Supply
SCHOTT offers various shapes from round to square with ground, standard or fine polished surfaces.
- Flat blanks can be supplied up to Ø 125 mm and from 0.5 to 15 mm thickness
- Dome blanks and curved windows: Up to 100 mm in diameter

Sample Parts
For sample parts we would like to offer you the following sample sizes:
- Diameter: 25 mm with a thickness of 2 mm
- Diameter: 50 mm with a thickness of 2 mm

Applications
- Thermal Imaging Systems
 - Thermography
 - Predictive Maintenance
 - Automotive Safety Systems
 - Vandal Proof Surveillance and Imaging
 - Force Protection
 - Intrinsically Safe IR Imaging Systems
- Machine Vision systems
 - Process Control
 - Robotic Manufacturing
 - UAV Imaging
Preliminary Data Sheet

Optical Properties

<table>
<thead>
<tr>
<th>Wavelength, Microns</th>
<th>Refractive Index @ 20 °C</th>
<th>(\frac{dn}{dT}, 10^{-6}/K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.441</td>
<td>2.482</td>
<td></td>
</tr>
<tr>
<td>0.639</td>
<td>2.348</td>
<td></td>
</tr>
<tr>
<td>0.947</td>
<td>2.297</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2.292</td>
<td>50</td>
</tr>
<tr>
<td>2</td>
<td>2.264</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>2.257</td>
<td>46</td>
</tr>
<tr>
<td>4</td>
<td>2.252</td>
<td>46</td>
</tr>
<tr>
<td>5</td>
<td>2.246</td>
<td>46</td>
</tr>
<tr>
<td>6</td>
<td>2.239</td>
<td>46</td>
</tr>
<tr>
<td>7</td>
<td>2.232</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>2.223</td>
<td>45</td>
</tr>
<tr>
<td>9</td>
<td>2.212</td>
<td>45</td>
</tr>
<tr>
<td>10</td>
<td>2.200</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>2.186</td>
<td>45</td>
</tr>
<tr>
<td>12</td>
<td>2.170</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>2.152</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>2.130</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Properties

- **Thermal Conductivity @ 20 °C, W/m/K**: 16.70
- **Specific Heat, J/g/K**: 0.47
- **Thermal Expansion (-40 °C to 70 °C) \(x 10^{-6}, K^{-1} \)**: 5.90

Mechanical Properties

- **Rupture Modulus MPa**: 120
- **Young’s Modulus GPa**: 74
- **Poisson’s Ratio**: 0.27
- **Hardness (Knoop) kg/mm²**: 270 – 310
- **Density g/cc**: 4.08

Transmission (typical curves)

Transmission (%) – normalized to 6.3 mm