Congratulations on Your Purchase
Thank you for purchasing the SCHOTT MaVi-S image processing stroboscope – a high-intensity light source for industrial image processing. Used with SCHOTT fiber optics and a camera, this instrument emits brief, intense light pulses that result in bright, clear, high-contrast images.

Used by properly trained professionals, and maintained as detailed in this user’s manual, the SCHOTT MaVi-S image processing stroboscope will be a valuable addition to your facility.

Please carefully observe the safety warnings described throughout this manual, as the SCHOTT MaVi-S image processing stroboscope is an extremely powerful light source. Proper precautions must be observed at all times during its operation.

Product Warranty and Service
The warranty for this SCHOTT instrument complies with the regulations described in SCHOTT’s General Terms and Conditions, as they exist at the time of your purchase. All product warranties are conditional on the instrument being used and maintained as described in this user’s manual.

The product warranty does not apply to damage caused by incorrect usage, external forces or stresses, or failure to observe the operating instructions set forth in this manual. The warranty also is invalidated in the event that the equipment is tampered with, or modified without authorization.

To return this instrument to SCHOTT, always use the original packaging. If the original packaging is not used, SCHOTT reserves the right to inspect the instrument for transportation or handling damage when it arrives at the SCHOTT facility. Please mark the package as fragile and sensitive to cold temperatures. When returning your stroboscope, please include a detailed written explanation of the reason for the return, as well as a comprehensive description of any performance problems you are experiencing.

Trademarks
Please be aware that all brand and product names mentioned in this user’s manual may be trademarks or registered trademarks of their respective companies or organizations.

Product Identification Label
MaVi-S Image Processing Stroboscope

\[
\begin{array}{|c|}
\hline
\text{SCHOTT} \\
\text{D-55122 Mainz Germany} \\
\hline
\text{Model No.:} \quad \text{A 20960} \\
\text{Serial No.:} \quad \text{0125213-006 /E} \\
\text{Mfg. Date:} \quad \text{07 2008} \\
\hline
\end{array}
\]
Table of Contents

1.0 Safety Information ... 6
 1.1 General Safety Information .. 6
 1.1.1 Important Safety Notes ... 6
 1.1.2 Intended Use ... 6
 1.1.3 Qualification ... 6
 1.1.4 Disposal .. 6
 1.2 Safe Handling of Xenon Flashlamps ... 7
 1.2.1 Flashlamp Safety Information .. 7
 1.2.2 Flashlamp Safety Precautions .. 7
 1.3 Electrical Safety .. 8
 1.3.1 Electrical Safety Information .. 8
 1.3.2 Electrical Safety Precautions .. 8
 1.3.3 Overload Protection ... 8

2.0 First Steps .. 9
 2.1 Product Description ... 9
 2.2 Unpacking and Inspection .. 9
 2.3 Getting Started .. 9
 2.3.1 Installation ... 9
 2.3.2 Main Power Connection .. 10
 2.3.3 Opening the Instrument .. 10
 2.4 Control Elements of the Stroboscope ... 10
 2.4.1 Front Panel ... 10
 2.4.2 Back Panel ... 11

3.0 Operation ... 12
 3.1 Turning On and Off .. 12
 3.1.1 MaVi-S Stroboscope .. 12
 3.1.2 Xenon Flashlamp ... 12
 3.2 Control Panel .. 12
 3.3 Functional Test .. 14
 3.4 Locking the Control Panel ... 14
 3.5 Setting the Frequency Limit .. 15
 3.6 Setting Single Flash Frequency .. 16
 3.7 Setting the Flash Intensity .. 16
 3.7.1 External Reference ... 16
 3.7.2 Relationship Between Voltage and Intensity .. 16
 3.7.3 Internal Reference .. 17
3.8 Setting a Trigger ... 17
 3.8.1 External Triggers ... 17
 3.8.2 Internal Trigger .. 18
 3.8.3 Trigger Delay .. 18
3.9 Setting the Burst Function .. 18
 3.9.1 Burst Frequency ... 19
 3.9.2 Number of Pulses ... 19
 3.9.3 Pulse Separation in the Burst 19
3.10 Reading and Resetting the Counter 20
 3.10.1 Total Counter .. 20
 3.10.2 Resettable Counter .. 20
3.11 Restoring the MaVi-S Default Settings 21
3.12 Changing Fuses .. 21
3.13 Changing the MaVi-S Lamp ... 22
3.14 Networking Several Stroboscopes (Master-Slave Function) 26
3.15 Power Adjustment of Several Stroboscopes 26
3.16 Instrument Cleaning ... 27

4.0 Technical Specifications of MaVi-S .. 28
 4.1 Standards Applied .. 28
 4.2 General Data .. 28
 4.2.1 Main Power Connection ... 28
 4.2.2 Ambient Conditions .. 28
 4.2.3 Housing ... 28
 4.2.4 Sound Emission ... 28
 4.3 Signal Inputs .. 29
 4.4 Signal Outputs .. 29
 4.5 Xenon Flashlamps ... 30

Appendix A: Operation of Interface RS232 31
A.1 Configuration of the Interface ... 31
A.2 Setting the Instrument Address ... 31
A.3 Interface Commands .. 31
 A.3.1 Syntax of the Interface Commands 31
 A.3.2 Commands to Define Settings 32
 A.3.3 Commands to Query Settings 33
 A.3.4 Commands to Link to Other Systems 36

Appendix B: Declaration of Conformity 37

Page Index ... 38
1.0 Safety Information

1.1 General Safety Information

1.1.1 Important Safety Notes
Please read this user’s manual before using the SCHOTT MaVi-S image processing stroboscope. It will provide you with important information regarding the proper use of this instrument, as well as important information about safety. This knowledge will protect users, as well as prevent damage to the instrument. Please pay particular attention to the basic safety information, as well as the information on proper installation, operation, and maintenance.

Please keep this user’s manual in a safe place, and make it available to people who are using the SCHOTT MaVi-S stroboscope. Never pass the instrument on to a new user without also passing on the user’s manual.

In this manual, the following safety and warning formats are used:

• **NOTE:** This indicates an action required to simplify the use of the instrument.
• **CAUTION:** This indicates that a potential hazard may exist that would result in damage to the instrument, and identifies the source of the danger.
• **WARNING:** This indicates a potential personal safety risk that could result in death or serious injury; the source of the danger is identified in each case.

1.1.2 Intended Use
The SCHOTT MaVi-S image processing stroboscope is intended for use in an industrial environment. It may only be used within the parameters defined in the technical specifications.

Safe and proper operation of this instrument depends on correct and appropriate transportation, handling, and storage, as well as the ongoing careful operation of the instrument, according to the instructions in this user’s manual.

When assembling, installing, and operating the instrument, all users must strictly adhere to the safety and accident-prevention guidelines contained within this manual.

1.1.3 Qualification
This instrument may only be operated by users who are familiar with high-intensity imaging equipment, and who have received special instruction in the proper use of xenon flashlamps. Please pay particular attention to the information on the safe handling of xenon flashlamps.

Expert maintenance and repair work may only be carried out by SCHOTT, or by qualified personnel who are authorized by SCHOTT to perform such tasks. Users should never attempt their own instrument repairs.

1.1.4 Disposal
Instruments that are no longer in use must be disposed of according to local regulations, unless otherwise provided for by SCHOTT.
1.2 Safe Handling of Xenon Flashlamps

1.2.1 Flashlamp Safety Information
The SCHOTT MaVi-S image processing stroboscope is equipped with an extremely stable xenon flashlamp that is focused into the fiber optics using an ellipsoid reflector. The light emitted from the aperture of the stroboscope, and from the fiber optics, is therefore extremely intense. When working with xenon flashlamps, users must take special precautions to ensure that this intense light does not enter the eye.

Due to its extreme brightness and high frequency, stroboscopic light can lead to seizures or blackouts in people who are photosensitive or have an epileptic condition. For this reason, the stroboscopic light should be shielded to the greatest extent possible.

To provide maximum user safety while the instrument is operating, the following precautions have been taken:
- SCHOTT instruments generally comply with the standards IEC and EN 62471 respectively.
- The aperture on the front panel of the instrument is covered by protective glass with an infrared filter. This safeguards users against splinters of glass that may result from a xenon flashlamp exploding.

1.2.2 Flashlamp Safety Precautions
Please observe the following safety precautions related to xenon flashlamps when using the stroboscope:
- Only qualified and fully trained users should be entrusted with setting up the instrument, adjusting it, and operating it.
- Avoid looking directly into the high-intensity stroboscopic light with the naked eye, or with the aid of mirrors or optical instruments. This applies not only to the direct flash from the instrument, but also to any light emitted from the fiber bundles and fiber-optic adapters used with the instrument.
- Only switch the stroboscope lamp on when you need to use it as a light source.
- Always switch the stroboscope lamp off before positioning and configuring the stroboscope.
- Only operate the stroboscope with the fiber optics connected, and shield the illuminated area completely from view.
- Ensure that general lighting levels are high when you are working on an active, unshielded stroboscope, in order to minimize the difference in the brightness level between the stroboscopic light and the general facility in which you are working.

WARNING – Danger from high-intensity light: Do not use any reflective tools, wear a watch, or otherwise promote light reflection when you are working near the beam path of the lamp.

WARNING – Danger from exploded splinters: The xenon flashlamps used in the MaVi-S stroboscope are under pressure and can explode.

WARNING – Danger from electrical current: The instrument housing should never be opened by users; doing so risks personal injury. In the event that your xenon flashlamp needs to be changed, please contact your local SCHOTT representative to identify a SCHOTT repair house that can safely make this change.
1.3 Electrical Safety

1.3.1 Electrical Safety Information
The SCHOTT MaVi-S image processing stroboscope complies with the electrical protection class 1 in accordance with the EU directive 2014/35/EU (low-voltage directive) and the protection rating IP40 (protection against solids > 1 mm, no protection against water). With correct power connection and appropriate use of the instrument for its intended purpose, user exposure to electrical current is prevented by its closed, grounded metal housing. This instrument complies with the EU directive 2014/30/EU (EMC directive) and is accordingly fail-safe.

1.3.2 Electrical Safety Precautions
Please observe the following electrical safety precautions when using this instrument:
- The stroboscope may only be connected to AC systems of 50/60 Hz with a nominal voltage in the range of 100 V to 260 V, using a three-pin main power cable with a grounded protective conductor.
- Defective fuses may only be replaced by fuses of the same type, and with the same rating. For more information on fuse replacement, refer to the product information found on the back of the instrument.
- The instrument must not be operated with an open housing; users should not open the housing.

WARNING – Danger from electrical current: The instrument housing should never be opened by users. Expert maintenance and repair work – which includes changing xenon flashlamps – may only be carried out by SCHOTT, or by a qualified SCHOTT repair house. Please contact your local SCHOTT representative for more information.

1.3.3 Overload Protection
The energy for the stroboscope lamp is buffered in a capacitor block of 13 μF/600 V. In conjunction with certain frequency intensity combinations, this capacity can lead to impermissible power dissipation of the xenon flashlamp. A function of the processor, the Safety Area Control, prevents such impermissible parameter combinations. If values are entered which lead to impermissible power dissipation at the frequency limit set, then the instrument will not accept these values. The permissible value ranges are shown in the figures below.

CAUTION – Danger from overloading: If you control the instrument externally via the BNC jack J4 – Intensity Ref, please note that the instrument’s overload protection feature is not active. In this case, you must strictly observe the frequency values shown below in order to protect against overload.
2.0 First Steps

2.1 Product Description

The SCHOTT MaVi-S image processing stroboscope is a light source for industrial image processing. Used in combination with SCHOTT fiber optics and your camera, the stroboscope’s extremely brief and intense light pulses create bright, high-contrast images.

These light pulses are generated by an extremely stable xenon stroboscopic flashlamp; the emitted light is focused into the fiber optic cable using an ellipsoid reflector.

2.2 Unpacking and Inspection

1. Check the packaging for signs of inappropriate handling during transportation.

2. After unpacking, check all components for external damage (scratches, loose screws, etc.).

3. In the case of a delivery error, product damage, or missing parts, please contact your local SCHOTT representative immediately, providing the serial number of the instrument. Serial numbers and identification labels can be found on the back panel of the instrument, as well as on the front cover of this user’s manual.

4. Retain the original packaging, in case you have to return the instrument to SCHOTT in the future.

2.3 Getting Started

2.3.1 Installation

The SCHOTT MaVi-S image processing stroboscope should not be set up in a temporary or provisional position. The instrument should be mounted securely and permanently. To install your new SCHOTT MaVi-S image processing stroboscope, please follow the steps below.

1. Using the drill holes on the instrument’s bottom panel as a guide, mount the instrument onto a suitable level substrate, either vertically or horizontally.

2. Connect the SCHOTT fiber optics to the aperture on the front panel of the stroboscope.

3. Connect the main power cable to the back of the stroboscope and to a grounded electrical socket.
2.3.2 Main Power Connection
The main voltage input of the SCHOTT MaVi-S image processing stroboscope is set up as a wide range input connection, which can be connected to all main voltages with nominal values in the range of 100 V to 260 V. Defective fuses may only be replaced by fuses of the same type, and having the same rating. For more information on fuse replacement, refer to the product information found on the back of the instrument. Please note that both fuses are active, and both must be checked if there is a problem with fuse operation.

2.3.3 Opening the Instrument
The stroboscope housing should only be opened to change the lamp. This is an expert task that can only be carried out by SCHOTT, or by qualified personnel who are authorized by SCHOTT to perform such tasks. Users should never open the stroboscope housing; doing so can cause personal injury and will invalidate the product warranty.

WARNING – Danger from electrical current: The instrument housing should never be opened by users. Expert maintenance and repair work – which includes changing xenon flashlamps – may only be carried out by SCHOTT, or an authorized SCHOTT repair house. Please contact your local SCHOTT representative for more information.

2.4 Control Elements of the Stroboscope

2.4.1 Front Panel
The front panel of the SCHOTT MaVi-S stroboscope is shown in the figure below.

1. Analog input J4 – Intensity Ref (BNC jack)
 Signal input for external control of flash intensity

2. Light aperture
 (fiber connection with end stop)
 Connector for fiber-optic adapter

3. Adjustment screws
 Used only for servicing purposes

4. Fixing screw
 Used to secure the control panel

5. Analog input J3 – Trigger (BNC jack)
 Signal input for an external trigger signal
2.4.2 Back Panel
The back panel of the MaVi-S image processing stroboscope is shown in the figure below.

1. RS232 interface output J2 – RS232
 (9-pin Sub-D plug).
 Interface output used to network several instruments

2. General warning labels

3. Power connection warning labels
 Labels with technical information on fuses and main power connection

4. Product identification label
 This label includes the serial number of the instrument, as well as other information

5. Main power connection
 (socket for standard power cord).
 The main voltage input is a wide range input

6. Fuse holders
 Use only main fuses 1.6 A/slow-blow fuses, regardless of the main voltage. Both fuses are active, and both must be checked if there is a problem with fuse operation. Use extreme caution when replacing fuses.

WARNING! – Danger from electrical current: The instrument housing should never be opened by users. Expert maintenance and repair work – which includes changing xenon flashlamps – may only be carried out by SCHOTT, or by a qualified SCHOTT repair house. Please contact your local SCHOTT representative for more information.

NOTE: Before checking the fuses, always ensure that the main power connection is turned off.

7. Main power switch
 This switch disconnects the stroboscope from its main power source (position O) and is used to turn off the instrument in case of danger.

8. Fixing screw for the control panel

 Interface input used for communicating with a personal computer, or networking several instruments.
3.0 Operation

3.1 Turning On and Off

3.1.1 MaVi-S Stroboscope
The MaVi-S image-processing stroboscope is turned on via the main power switch on the back of the instrument (the "I" position). After it is switched on, the current firmware version briefly appears in the LED display. Then the operating status most recently used is automatically restored. The settings that were last selected are maintained, even if the instrument has been disconnected from electrical power for a long time.

3.1.2 Xenon Flashlamp
The MaVi-S xenon flashlamp is controlled via the Strobe key. When the flashlamp is activated, the LED display will read “On.” When the lamp is turned off, the LED display will read “Off.”

WARNING – Danger from high-intensity light: Avoid looking into the high-intensity MaVi-S light, or being exposed to it for long periods of time. Please refer to the safety information about working with xenon flashlamps.

Input can be made via the control panel, whether the MaVi-S lamp is turned on or off, provided that the control panel has not been locked.

3.2 Control Panel

The control panel for the SCHOTT MaVi-S stroboscope is shown in the figure below. By pressing a key, you adjust the stroboscope performance characteristic – e.g., trigger source – that is controlled by this key. As you adjust various settings, the corresponding LED will light up, so you know which performance characteristic, or parameter, you are currently changing.

![Foil keyboard of the control panel](image)

1. **Strobe key**
 This key is used to switch the stroboscope on and off. It has three positions:
 - **On**: This indicates that the stroboscope lamp is switched on.
 - **Keyboard locked**: This indicates that input is not possible, as the key lock has been activated
 - **Off**: This indicates that the stroboscope lamp is switched off.
2. **Intensity Ref. key**
 This key is used to choose between internal and external control of the flash intensity.
 - **Internal**
 This indicates that flash intensity can be configured internally, via the control panel or the RS232 interface.
 - **External**
 This indicates that the flash intensity can be configured via an external signal through the BNC jack J4 – Intensity Ref.

3. **Four-digit LED display**
 The LED display shows the current four-digit value set for the parameter that is being controlled via the Select key.

4. **Select key**
 This key is used to select one of the four adjustable parameters of the stroboscope. The value that is currently set for the selected parameter is shown in the four-digit LED display.
 - **Intensity (%)**
 This indicates the value of flash intensity, measured as a percentage.
 - **Frequency (Hz)**
 This indicates the frequency of the internal frequency generator, measured in hertz.
 - **Burst Pulses (No.)**
 This indicates the current number of pulses in a burst.
 - **Burst Pulse**
 This indicates the time delay between the individual pulses of a burst, measured in milliseconds (10^-3 seconds).

5. **Adjustment keys +/-**
 These keys are used to change the current settings to make the values higher (+) or lower (−).

6. **Decimal Select key**
 This key is used to select the position in the LED display that you want to change, by using the adjustment keys. The position that is currently selected flashes.

7. **Trigger key**
 This key is used to select one of the four possible trigger sources:
 - **Pulse**
 This indicates that the trigger pulse will come from input J3 – Trigger.
 - **Video**
 This indicates that the trigger source will be a video signal at the input J3 – Trigger.
 - **Slave**
 This indicates that the trigger pulse will come from input J1 – RS232, connected to an upstream stroboscope.
 - **Intern**
 This indicates that the trigger source is an internally generated trigger signal.

8. **Burst key**
 This key is used to choose between an individual flash and the burst function.
 - **On**
 This indicates that the burst function is switched on.
 - **Off**
 This indicates that the burst function is switched off, and that the instrument is operating as a simple stroboscope.

9. **Sensor key**
 This key is not used, and its settings have no effect on operation.
3.3 Functional Test

To carry out a first functional test on your new SCHOTT MaVi-S image processing stroboscope, please follow the steps below.

1. Turn on the stroboscope, using the main power switch on the back of the instrument (position I).

2. By repeatedly pressing the Trigger key, select the trigger source Intern. If this input is not accepted, and the message “Loc” appears in the LED display, then the control panel of the instrument is locked. In this case, switch the key lock to the “off” position.

3. By repeatedly pressing the Intensity Ref. key, select the reference option „Internal“.

4. By repeatedly pressing the Strobe key, switch the stroboscope lamp on (LED adjacent to the strobe button will light).

The stroboscope should now emit stroboscopic light.

If the functional check was successful, you can now use the stroboscope as described in the following sections of this user’s manual.

If any errors occur during the functional check, contact your local SCHOTT representative for assistance.

3.4 Locking the Control Panel

The MaVi-S stroboscope can be locked, in order to prevent unintentional changes to the settings. The button for locking the control panel is inside the pinhole opening at the side of the control panel. (See figure below.)

![Side view of the MaVi-S stroboscope, showing the opening for locking the control panel](image)

Use a thin, non-metallic object to press the button inside the pinhole opening (labelled “1” in the figure above) located at the side of the control panel. When this button is pressed, the instrument is switched between two states: locked and unlocked. When the keys are locked via this button, the LED display on
the control panel that is labelled “Keyboard locked” will light up. If any key is pressed on a locked control panel, the message “Loc” will appear in the LED display.

Please note that it is still possible to control the instrument via the RS232 interface, even if the control panel is locked. See Appendix A for more information.

3.5 Setting the Frequency Limit

Before configuring the stroboscope, select a frequency limit that reflects the highest expected frequency at which the instrument will be operating.

The energy for the stroboscopic lamp is buffered in a capacitor block. The capacity of this block can be exceeded if the combined limits of frequency and intensity exceed the permissible operating range. The Safety Area Control function uses the frequency limit entered to calculate the range of acceptable values for both the intensity and the pulse frequency in a burst, and blocks the strobe from operating outside the acceptable range.

To set the frequency limit, please follow these steps:

1. Press and hold the Select key. While holding it, press the + key repeatedly, until “FrLi” (for “frequency limit”) appears in the LED display.

2. Release the Select key and, using the Decimal Select key, choose the position in the LED display that you want to change. The selected decimal position in the LED display will flash.

3. Change the selected position by using the +/− keys. Once this is set, the Safety Area Control function will only allow values that are within the permissible power loss range for all subsequent settings.

4. To quit the menu, press the Select key and, while holding it, press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

Quitting the menu can also be accomplished by pressing both the Select key and the – key at the same time.

The frequency limit is adjustable from 20 Hz to 200 Hz. The values allowed by the Safety Area Control function correspond to the following system:

<table>
<thead>
<tr>
<th>Minimum Value</th>
<th>Description</th>
<th>Maximum Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.0%</td>
<td>Intensity (internal/external setting)</td>
<td>(2000/FrLi) corresponds to 100%</td>
</tr>
<tr>
<td>1Hz</td>
<td>Frequency</td>
<td>FrLi</td>
</tr>
<tr>
<td>(1/FrLi)s</td>
<td>Pulse separation</td>
<td>250 ms</td>
</tr>
</tbody>
</table>

NOTE: Settings that fall outside the permissible power loss range are automatically overwritten by the Safety Area Control function.
3.6 Setting Single Flash Frequency

The single flash frequency of the MaVi-S image processing stroboscope can be set from 1 Hz to 200 Hz. The step size is 0.1 Hz. To change the single flash frequency, follow these steps:

1. Use the Select key to choose the LED “Frequency.”
2. Use the Decimal Select key to select the position in the LED display that you want to change. The selected decimal position in the LED display will flash.
3. Change the value of the selected position using the +/- keys.

If the desired value cannot be set, this means that it falls outside the permissible performance values of the xenon strobe lamp, and is blocked by the Safety Area Control function.

3.7 Setting the Flash Intensity

3.7.1 External Reference
The flash intensity can be controlled using an external power supply. To do so, follow these steps:

1. Press the Intensity Ref. key to select “External.” The adjacent LED will illuminate. The instrument is now set to use the external intensity control.

2. Connect the external intensity reference signal to the BNC jack labelled J4 – Intensity Ref.

The MaVi-S stroboscope converts the applied voltage to a flash intensity between 8.0% and 100%. The strobe flash intensity depends on the selected characteristics. The intensity value is shown in the LED display. The following relationship limits apply:

\[0.6V = 8\% \]
\[6V = 100\% \]

3.7.2 Relationship between Voltage and Intensity
The relationship between the applied voltage and the resulting flash intensity depends on the selected characteristics. MaVi-S users can choose between a linear relationship and a square relationship. The default setting for the MaVi-S is the linear relationship.

To change the relationship between voltage and flash intensity, follow these steps:

1. Press the Select key and, while holding it, press the + key repeatedly, until “rEF” appears in the LED display.

2. Use the + key to change to the setting “Lin” for a linear relationship or to “Quad” for a square relationship.
3. To exit the menu, press and hold the Select key. While holding the Select key, press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

You can also exit the menu by pressing both the Select key and the – key simultaneously. The relationship has now been selected, and is immediately applicable.

3.7.3 Internal Reference
The flash intensity can also be controlled directly by the MaVi-S stroboscope, using the control panel. To do so, follow these steps:

1. Use the Intensity Ref. key to select “Internal” mode. The adjacent LED will illuminate. The instrument is now set to the internal intensity control mode.

2. Use the Select key to choose the LED “Intensity.” The intensity value that is currently set will appear in the LED display.

3. Use the Decimal Select key to choose the position in the LED display that you want to change. The selected decimal position in the LED display will flash.

4. Change the selected position with the aid of the +/- keys.

The intensity is adjustable from 8.0% to 100%. The step size is 0.1%. A change does not become effective until the first time the flash condenser is reloaded. This occurs following the second flash after the change has been made.

If the desired value cannot be set, then it is outside the permissible range of values for the xenon lamp, and is blocked by the Safety Area Control function.

NOTE: The charge level of the flash condenser is at a random level immediately after the MaVi-S stroboscope is switched on. Therefore, the first flash may be of a significantly higher intensity than the setting shown on the control panel.

3.8 Setting a Trigger

There are four different ways to trigger the MaVi-S xenon flashlamp: external pulse, external video, external slave, or internal trigger. Every trigger impulse results in a flash. If the MaVi-S stroboscope is operating in burst mode, then every trigger impulse will set off a burst of flashes.

3.8.1 External Triggers
To set one of the three external trigger options (pulse, video, or slave), follow these steps:

1. Use the Trigger key to select the external trigger source from these three options:
 - **Pulse**: Trigger using a pulse (rising edge)
 - **Video**: Trigger using a video signal
 - **Slave**: Trigger using the signal of an upstream MaVi-S

2. Connect the appropriate external trigger signal:
Pulse: Impulse into the BNC jack J3 – Trigger
Video: Video signal into the BNC jack J3 – Trigger
Slave: Trigger output signal of the upstream MaVi-S into the Sub-D jack J1 – RS232 (in)

With a pulse trigger, the rising edge of the signal pulse is used. With a video trigger, the vertical trigger signal is filtered out of the video signal.

3.8.2 Internal Trigger

If required, the MaVi-S instrument can also generate a trigger signal internally, corresponding to the single flash frequency. To choose an internal trigger, use the Trigger key to select the “Internal” mode. The adjacent LED will illuminate.

A trigger output signal is then also available via the BNC jack J2 – RS232 (out) to synchronize additional MaVi-S instruments operating in slave mode. The frequency of the trigger output signal corresponds to the flash frequency setting.

3.8.3 Trigger Delay

Users can also set a time delay between the trigger signal and the stroboscopic flash. To create such a delay, simply follow these steps:

1. Press and hold the Select key. While holding it, press the + key repeatedly until “dELY” appears in the LED display.

2. Release the Select key, and then use the Decimal Select key to select the position in the LED display you want to change. The selected position in the LED display will flash.

3. Change the selected position, using the +/- keys.

4. To exit the menu, press and hold the Select key. While holding it, press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

You can also exit the menu immediately by pressing both the Select key and the – key simultaneously.

The delay time between the trigger signal and the corresponding flash can be set between 0.01% and 99.99%. The step size is 0.01%, and a single step corresponds to 0.326 μs. The following limits are given:

- Minimum delay time = 0.326 μs (10⁻⁶ seconds)
- Maximum delay time = 3.254 ms (10⁻³ seconds)

3.9 Setting the Burst Function

The MaVi-S image processing stroboscope also features a burst function.

To switch on this feature, use the Burst key to select “Burst” mode. The adjacent LED will read “On.” The instrument has now been switched from single flash mode to burst mode.
3.9.1 Burst Frequency
Users can customize the burst frequency of the MaVi-S stroboscope. To do so, follow these steps:

1. Use the Select key to choose “Frequency.” The adjacent LED will illuminate. In the LED display, the current setting for the frequency of bursts is displayed.

2. Use the Decimal Select key to select the position in the LED display that you want to change. The chosen position in the LED display flashes.

4. Change the selected position, with the aid of the +/- keys.

If the desired value cannot be set, then it falls outside the permissible performance range of the xenon lamp, and is blocked by the Safety Area Control function.

3.9.2 Number of Pulses
The MaVi-S stroboscope also allows users to define the number of pulses for a burst. Simply follow these steps:

1. Use the Select key to choose the LED “Burst Pulses (No.).” The LED display will show the number of pulses currently set for a burst.

2. Use the Decimal Select key to choose the position in the LED display that you want to change. The selected position in the LED display will flash.

3. Change the value in the selected position with the +/- keys. The number of pulses can be adjusted from 1 to 250.

3.9.3 Pulse Separation in the Burst
Users may also want to create a pulse separation when using the burst feature. This can be accomplished via the following steps:

1. Use the Select key to choose the LED “Burst Pulse Separation (ms).” The LED display shows the current separation between the pulses, in milliseconds (ms).

2. Use the Decimal Select key to choose the position in the LED display that you want to change. The selected position in the LED display will flash.

3. Change the value in the selected position, using the +/- keys.

NOTE: The overall time period of the pulse package – which includes the pulse separation and the number of pulses chosen – must be within the set frequency period for the burst.

If the desired value cannot be set, then it is outside the permissible range of values for the xenon lamp, and is blocked by the Safety Area Control function.
3.10 Reading and Resetting the Counter

3.10.1 Total Counter
The MaVi-S image processing stroboscope has two different counters for the flashes that have already been emitted. A static total counter records all of the flashes ever emitted by the instrument. This counter value is saved once per hour in the flash memory of the instrument.

To read this counter, follow these steps:

1. Press and hold the Select key. While holding it, press the + key repeatedly, until “FLSU” appears in the LED display.

2. Release the Select key. The number of all flashes generated by the instrument so far is shown in the LED display.

3. To exit the menu, press and hold the Select key. While holding it, press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

You can also exit the menu quickly by pressing the Select key and the – key at the same time.

The counter reading in the LED display is exponential, from 00E0 to 90E9. This counter reading cannot be deleted.

3.10.2 Resettable Counter
The resettable counter of the MaVi-S stroboscope records the number of flashes that have been emitted since the last reset. You can use this counter to estimate when the lamp will need to be changed. To read the counter, follow these steps:

1. Press and hold the Select key. Press the + key repeatedly, until “FLco” appears in the LED display.

2. Release the Select key. The LED display will show the number of flashes since the last reset of the counter.

3. To exit the menu, press and hold the Select key. Press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

You can also exit the menu by pressing the Select key and the – key simultaneously.

To reset this counter to zero, proceed as follows:

1. Press and hold the Select key. Press the + key repeatedly, until “FLco” appears in the LED display.

2. Release the Select key. The LED display shows the number of flashes since the last reset of the counter.

3. Press the – key. The counter is reset to zero.

4. To exit the menu, press and hold the Select key. Press the + key repeatedly, until “End” appears in the LED display. Release the Select key.
You can also press both the Select key and the – key at the same time in order to quickly exit the menu.

The counter reading in the LED display is exponential, from 00E0 to 90E8.

3.11 Restoring the MaVi-S Default Settings
The MaVi-S can be returned to its default settings. These default settings are:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intensity</td>
<td>100 %</td>
</tr>
<tr>
<td>Frequency</td>
<td>1 Hz</td>
</tr>
<tr>
<td>Number of pulses per burst</td>
<td>1</td>
</tr>
<tr>
<td>Separation between pulses in burst</td>
<td>100 ms</td>
</tr>
<tr>
<td>Burst</td>
<td>Off</td>
</tr>
<tr>
<td>Trigger</td>
<td>Pulse</td>
</tr>
<tr>
<td>Intensity reference</td>
<td>External</td>
</tr>
<tr>
<td>Strobe</td>
<td>On</td>
</tr>
</tbody>
</table>

To restore these default settings, follow these steps:

1. Press and hold the Select key. Press the + key repeatedly, until “rES” appears in the LED display.

2. Release the Select key.

3. Keep the Strobe key pressed, and press the – key. The instrument is reset to its default settings.

4. To exit the menu, press and hold the Select key. Press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

To exit the menu immediately, you can simultaneously press the Select key and the – key.

3.12 Changing Fuses

The holders for the fuses can be found on the back of the MaVi-S stroboscope. To check and change fuses, follow these steps:

NOTE: Before checking and/or replacing fuses, always ensure that the main plug is disconnected.

1. Turn off the instrument, using the main power switch on the back, and unplug the main power connection.

WARNING – Danger from electrical current: After switching the instrument off, wait for one minute to ensure that all the electric circuits of the MaVi-S stroboscope have discharged completely.

It is possible that the MaVi-S may flash a few more times after being unplugged, because the capacitor must discharge completely.
2. Turn the fuse holder counter-clockwise, using a flat-bladed screwdriver. Remove the fuse holder and the fuse from the instrument.

3. If the fuse is defective, exchange it with a fuse of the same type and with the same rating. You will find technical information on replacement fuses on the MaVi-S warning label on the back panel of the instrument.

4. Using the flat-bladed screwdriver, turn the fuse holder clockwise into the housing in order to replace it.

NOTE: Both fuses are active, and both must be checked if there is a performance issue.

3.13 Changing the MaVi-S Lamp

The xenon flashlamp of the MaVi-S image processing stroboscope needs to be changed at regular intervals. The xenon lamp has electrode material that is continuously vaporized by the arc and deposited on the inside of the lamp – causing the luminous efficiency over the life of the lamp to decrease. After approximately 10E8 flashes (100 million), the luminous efficiency falls to less than 70%, and the lamp should be changed.

Changing the xenon flashlamp requires opening the instrument housing, which could cause personal injury due to the high voltage associated with the flashlamp.

Opening the instrument housing can also invalidate the MaVi-S product warranty.

In the event that your lamp needs to be changed, please contact your local SCHOTT representative to identify a SCHOTT repair house that can safely make this change.

WARNING – Danger from electrical current: The instrument housing should never be opened by users. Expert maintenance and repair work – which includes changing xenon flashlamps – may only be carried out by SCHOTT, or by qualified personnel who are authorized by SCHOTT to perform such tasks.

WARNING – Danger from exploded splinters: The xenon flashlamps used in the MaVi-S stroboscope are under pressure and can explode.

Exchanging the Stroboscope Lamp

The xenon flashlamp of the stroboscope needs to be exchanged at regular intervals. On the inside of the xenon flashlamp, electrode material which has been vaporized by the arc is continuously deposited so that the luminous efficiency over life decreases. After approx. 10E8 flashes, the luminous efficiency falls to less than 70% and the lamp should be exchanged.

WARNING!

Danger from electrical current!
The stroboscope lamp may only be exchanged by qualified experts.
To exchange the flashlamp, please proceed as follows:

1. Switch the stroboscope off and unplug the mains plug.

 WARNING!
 Danger from electrical current!
 After switching it off, wait for one minute before opening the instrument! Only then can you be sure that all the electric circuits of the stroboscope have discharged completely.

 NOTE!
 Before exchanging the stroboscope lamp, always ensure that the mains plug is disconnected!

 It is possible that the stroboscope may flash a few more times after unplugging the mains plug until the capacitor has discharge completely.

 WARNING!
 Danger from electrical current!
 Never connect the instrument to the mains while the housing is open!

2. Unscrew the four cross-headed screws on the control panel on the front and back panel and remove the control panel vertically upwards.

 WARNING!
 Danger from exploded splinters!
 The xenon flashlamps used in the MaVi-S are under pressure and can explode.

 NOTE!
 When exchanging the stroboscope lamp, ensure that you are wearing suitable eye and hand protection!

3. Unscrew the four cross-headed screws on the housing cover and carefully remove the cover.

 CAUTION!
 Danger from mishandling!
 The housing cover is connected to the housing via an earth cable. Make sure you do not rip it off!
4. Unscrew the cross-headed screw from the lamp connector. We recommend that you use a magnetic screwdriver.

![View inside the instrument with the housing cover removed](image)

5. Undo the two Allen screws on the lamp holder using an Allen key size 2.5

6. Pull the xenon flashlamp forwards out of the lamp holder and remove it upwards, out of the instrument.

7. Dispose of the defective xenon flashlamp in the packaging of the replacement lamp appropriately for harmful substances.

![CAUTION! Danger from mishandling!](image)

When installing the new xenon flashlamp, please make sure that you do not get any fingerprints on the glass of the lamp! If you accidentally do, clean it carefully with a soft, lint-free cloth before closing the stroboscope again.

8. Bend the wire connection of the new stroboscope lamp twice at a right angle directly after the electrode pin.

![Dimensions for bends in the connecting wire](image)

9. Position the new stroboscope lamp in the reflector again and move both together into the slot marked on the housing.
10. Now move the stroboscope lamp back into the stroboscope lamp holder until it stops and tighten the two Allen screws hand-tight again.

11. Screw the end of the connecting wire with the annular cable lug handtight to the stroboscope lamp connector.

12. Now screw the housing cover back onto the stroboscope.

| CAUTION! |
| Danger from mishandling! |
| In doing so, make sure that the earth cable does not get jammed! |

13. Place the control panel vertically from above back onto the instrument.

| CAUTION! |
| Danger from mishandling! |
| Make sure that you plug in the plug connectors on the control panel without bending them so as not to damage them! |

14. Tighten the two cross-headed screws of the control panel on the back and the front panels of the instrument hand-tight.

The instrument is now ready to use again.

3.14 Networking Several Stroboscopes (Master-Slave Function)

The MaVi-S image processing stroboscope from SCHOTT enables users to network their instrument with several other MaVi-S instruments. In fact, each MaVi-S can be connected in a master-slave function with up to nine other stroboscopes. To establish this instrument network, follow these steps:

1. Working with the master MaVi-S stroboscope, define all the necessary settings on this instrument.

2. Connect the socket j2 – RS232 (out) of the master MaVi-S stroboscope to the jack J1 – RS232 (in) of the next MaVi-S instrument (RS232 cable, 1:1).

3. Connect the socket j2 – RS232 (out) of this second MaVi-S to the jack J1 – RS232 (in) of the next MaVi-S instrument. Repeat this step for each MaVi-S stroboscope in use.

4. For each of the slave stroboscopes connected to the master MaVi-S, use the Trigger key to select “Slave” mode. The adjacent LED will illuminate.
5. Adjust all other settings of the slave instruments to match those of the master MaVi-S, especially the trigger delay.

The master-slave function only refers to the trigger signal. The first MaVi-S in the chain is the master MaVi-S, acting as the trigger source for the other MaVi-S instruments. All other settings have to be made individually for each MaVi-S stroboscope in the network.

3.15 Power Adjustment of Several Stroboscopes

For technical reasons, there are slight deviations in the xenon flashlamps and reflectors used in SCHOTT’s MaVi-S image processing stroboscopes. These deviations can lead to varying levels of brightness across MaVi-S stroboscopes, even if the instruments have the same intensity setting. To balance these intensity differences across multiple instruments, an intensity adjustment may be necessary for each MaVi-S stroboscope.

A percentage value is set for the power adjustment, which determines the percentage of the power actually available to use for a flash, if the intensity on the instrument is set to 100%.

To make a power adjustment on two MaVi-S instruments, follow these steps:

1. Select one MaVi-S stroboscope as the reference instrument, and set its intensity to 100%. The MaVi-S with the weaker intensity should be used as the reference instrument.

2. Measure the intensity of this reference instrument, using a light meter or associated image analysis software. This value will be used as a benchmark for all other MaVi-S instruments used in conjunction with this reference stroboscope.

3. Set the intensity of the second MaVi-S instrument to 100%, and measure its intensity.

4. Estimate the percentage to which the intensity of the second MaVi-S stroboscope needs to be reduced, in order to attain the same intensity level as the reference instrument.

5. Press and hold the Select key. Press the + key repeatedly, until “PoAd” appears in the LED display. The value that was previously set will be shown in the LED display.

6. Use the Decimal Select key to choose the position in the LED display that needs to be changed. The selected position in the LED display will flash.

7. Change the selected position, using the +/- keys.

8. Now measure the intensity of the second MaVi-S stroboscope, using a light meter or associated image analysis software. Compare this value to the intensity of the reference instrument measured in Step 2.

9. Repeat steps 4 through 8 until the intensity of the second MaVi-S stroboscope corresponds to the intensity of the reference instrument.
10. To exit the menu, press and hold the Select key. Press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

You can also quickly exit the menu by pressing the Select key and the – key simultaneously.

3.16 Instrument Cleaning

The housing surfaces of the MaVi-S stroboscope can be cleaned using mild detergents or disinfectant solutions. Solvent-based cleaning products – including bleaches and acetone – should be avoided, along with abrasives.

NOTE: Before cleaning the instrument, switch it off and unplug the main power connection.
4.0 Technical Specifications of MaVi-S

4.1 Standards Applied

Electrical safety
IEC/EN 61010-1:2010 (Safety requirements for electrical equipment for measurement, control, and laboratory use)

EMC
IEC/EN 61326-1:2013 (EMC requirements on emission and immunity – electrical equipment for measurement, control, and laboratory use)
- Emission: FCC Class B
- IEC/EN 61000-6-3
- Immunity: IEC/EN 61000-4-2 to 61000-4-6 and IEC/EN 61000-4-11

CSA-No.
241241

4.2 General Data

4.2.1 Main Power Connection
- Main voltage: 100 – 260 VAC
- Power consumption: max. 75 VA
- Fuses: 1.6 A/slow-blow
- Protection class: 1 (protective grounding)

4.2.2 Ambient Conditions
- Operating temperature: 0°C – 43°C (32°F – 109.4°F)
- Storage temperature: −40°C – 90°C (−40°F – 194°F)
- Relative humidity: max. 80%, non-condensing
- Altitude of operating location: 0 – 3000 meters (0 – 9842.5 feet) above sea level

4.2.3 Housing
- Protection rating: IP40
- Instrument dimensions: 110 mm x 200 mm x 185 mm (4.33 in. x 7.87 in. x 7.28 in.)
- Base plate dimensions: 110 mm x 190 mm x 2 mm (4.33 in. x 7.48 in. x 0.08 in.)
- Weight: 2 kg (4.41 pounds)

4.2.4 Sound Emission
- Sound level: 61 dBA at 1 meter distance
4.3 Signal Inputs

J1 – RS232 (in)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>9600</td>
</tr>
<tr>
<td>Data format</td>
<td>1 start bit, 8 data bits, 1 stop bit, no parity bit</td>
</tr>
<tr>
<td>Pin configuration</td>
<td>Looking at the jack from the outside:</td>
</tr>
<tr>
<td>Pin 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 2</td>
<td>transmitted data T x D (→)</td>
</tr>
<tr>
<td>Pin 3</td>
<td>received data R x D (←)</td>
</tr>
<tr>
<td>Pin 4</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 5</td>
<td>reference potential GND</td>
</tr>
<tr>
<td>Pin 6</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 7</td>
<td>Trigger input TTL</td>
</tr>
<tr>
<td>Pin 8</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 9</td>
<td>N/A</td>
</tr>
</tbody>
</table>

J3 – Trigger (pulse/video)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>4 – 27 V</td>
</tr>
<tr>
<td>Trigger level</td>
<td>2.2 V</td>
</tr>
<tr>
<td>Input resistance</td>
<td>11.5 kΩ</td>
</tr>
<tr>
<td>Compatibility</td>
<td>TTL (5 V)</td>
</tr>
<tr>
<td></td>
<td>SPS (24 V)</td>
</tr>
<tr>
<td></td>
<td>PAL/CCIR video signal</td>
</tr>
</tbody>
</table>

J4 – Intensity Ref.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage range</td>
<td>0 – 6 VDC</td>
</tr>
<tr>
<td>Setting range</td>
<td>0.6 V (≈ 8% intensity) – 6 V (≈ 100% intensity)</td>
</tr>
<tr>
<td>Input resistance</td>
<td>40 kΩ</td>
</tr>
</tbody>
</table>

CAUTION – Danger from overloading: If you control the instrument externally via the BNC jack J4 – Intensity Ref., please note that the instrument’s overload protection feature is not active. In this case, you must strictly observe the frequency values, in order to protect against overload.

4.4 Signal Outputs

J2 – RS232 (out)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baud rate</td>
<td>9600</td>
</tr>
<tr>
<td>Data format</td>
<td>1 start bit, 8 data bits, 1 stop bit, no parity bit</td>
</tr>
<tr>
<td>Pin configuration</td>
<td>Looking at the plug from the outside:</td>
</tr>
<tr>
<td>Pin 1</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 2</td>
<td>transmitted data T x D (→)</td>
</tr>
<tr>
<td>Pin 3</td>
<td>received data R x D (←)</td>
</tr>
<tr>
<td>Pin 4</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 5</td>
<td>reference potential GND</td>
</tr>
<tr>
<td>Pin 6</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 7</td>
<td>Trigger input TTL</td>
</tr>
<tr>
<td>Pin 8</td>
<td>N/A</td>
</tr>
<tr>
<td>Pin 9</td>
<td>N/A</td>
</tr>
</tbody>
</table>
4.5 Xenon Flashlamps

- Maximum energy: max. 2.16 J electrical, at up to 20 Hz
- Frequency: max. 200 Hz
- Spectrum: approx. 300 – 1000 nm
- Pulse-to-pulse stability: typ. 1.5 – 2.5%
- Service life: 10E8 flashes (100 million)

The radiation spectra of the xenon flashlamps are shown in the figures below. They were measured with instruments without IR filter protection glass.
Appendix A: Operation of Interface RS232

A.1 Configuration of the Interface

As an alternative to operating the SCHOTT MaVi-S image processing stroboscope using the instrument’s control panel, all functions of the stroboscope can also be controlled via the RS232 interface.

The RS232 interface has the following configuration:

- 9600 Baud
- 1 start bit, 8 data bits, 1 stop bit
- No parity bit
- No hardware or software handshake

A.2 Setting the Instrument Address

In order to control several stroboscopes via the RS232 interface, each instrument must first have a unique instrument address assigned to it. To set an instrument address, follow these steps:

1. Press the Select key and, while holding it, press the + key repeatedly, until “Adr x” appears in the LED display (“x” stands for the instrument address).

2. Now use the adjustment keys +/- to set the required instrument address.

3. To quit the menu, press the Select key and, while holding it, press the + key repeatedly, until “End” appears in the LED display. Release the Select key.

Users can quit the menu immediately by pressing the Select key and the – key simultaneously.

A.3 Interface Commands

A.3.1 Syntax of the Interface Commands

When describing interface commands in this appendix, the square brackets [] and the spaces are not part of the command. They are used here simply to clarify and improve the readability of the individual parts of each command.

Each command must be confirmed with the Return key (↵).

Before the actual command, you will find the address of the specific MaVi-S instrument that the command will be applied to. If several instruments are being operated together, then the corresponding instrument addresses have to be strung together. For example, the command “37setint80↵)” sets the intensity for the instruments 3 and 7 to 80%.

If no address is defined for the command, then the command will apply to all stroboscopes that are connected and networked at the time. Please note that all query commands allow only one instrument address to be given.
A.3.2 Commands to Define Settings

General Commands

Users can set the basic functions of the MaVi-S instrument with the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[adr] stRon ←</td>
<td>Switches the stroboscope lamp on; input via the control panel is possible</td>
</tr>
<tr>
<td>[adr] stroff ←</td>
<td>Switches the stroboscope lamp off; input via the control panel is possible</td>
</tr>
<tr>
<td>[adr] keyloc ←</td>
<td>Locks all keys on the control panel of the instrument</td>
</tr>
<tr>
<td>[adr] keyopn ←</td>
<td>Unlocks all keys on the control panel of the instrument</td>
</tr>
<tr>
<td>[adr] setint [data] ←</td>
<td>Sets the intensity to the given value in %; value range is 8 – 100</td>
</tr>
<tr>
<td>[adr] refint ←</td>
<td>Sets the instrument to internal intensity reference</td>
</tr>
<tr>
<td>[adr] refext ←</td>
<td>Sets the instrument to an external intensity reference via the BNC jack J4 – Intensity Ref.</td>
</tr>
<tr>
<td>[adr] setfre [data] ←</td>
<td>Sets the frequency to the given value in Hz; value range is 1 – 200 and step size is 0.1</td>
</tr>
<tr>
<td>[adr] setref [data] ←</td>
<td>Sets the required reference diagram</td>
</tr>
<tr>
<td></td>
<td>Possible values:</td>
</tr>
<tr>
<td></td>
<td>0 = Linear reference diagram</td>
</tr>
<tr>
<td></td>
<td>1 = Square reference diagram</td>
</tr>
</tbody>
</table>

Trigger Commands

SCHOTT MaVi-S users can select from four different trigger sources via the RS232 interface, by using the following commands:

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[adr] tripul ←</td>
<td>Sets the instrument to external trigger from a pulse</td>
</tr>
<tr>
<td>[adr] trivid ←</td>
<td>Sets the instrument to external trigger from a video signal</td>
</tr>
<tr>
<td>[adr] trislA ←</td>
<td>Sets the instrument to external trigger from an upstream instrument via the slave function</td>
</tr>
<tr>
<td>[adr] triiint ←</td>
<td>Sets the instrument to internal trigger</td>
</tr>
</tbody>
</table>
Users can also set a signal delay between the trigger and setting off the flash, by applying the following commands:

Command
[adr] setdel [data]
Function
Sets a time delay between the trigger signal and flash, expressed as a percentage; the value range is 0.01 – 99.99

[adr] setdelabs
[data]
Sets an absolute time delay between the trigger signal and setting off the flash in ns (10^-9 seconds); value range is 0 – 3.000.000 and step size is 54 ns. Digital processing generates a rounding error of max. 54 ns.

Commands for the Burst Mode
Users can configure the MaVi-S instrument’s burst mode via the RS232 interface by using the following commands:

Command
[adr] buron
Function
Switches the burst mode on

[adr] buroff
Switches the burst mode off; the instrument then works in single flash mode again

[adr] setpul [data]
Sets the number of pulses for a burst to the given value; value range is 1 – 250

[adr] setsep [data]
Sets the separation between the pulses of a burst to the given value in ms (10^-3 seconds); value range is 1 – 1000

Command for the Resettable Counter
The resettable counter of the SCHOTT MaVi-S stroboscope can be reset to zero by using the following command:

Command
[adr] resflic
Function
Resets the counter

A.3.3 Commands to Query Settings
SCHOTT MaVi-S users can also use the RS232 interface to send queries regarding the settings for a given instrument. Users can either check one setting, or send a query regarding all the instrument’s settings.

Individual Settings Queries
Users can query individual settings for a MaVi-S stroboscope via the RS232 interface by using the following commands. Please note that all query commands allow only one instrument address to be given.
### Command	Function
[adr] telint | Queries the flash intensity setting; answer is in the form: [adr] telint: [data] Possible values range from 8 to 100%

[adr] telfre | Queries the single flash frequency setting; answer is in the form: [adr] telfre: [data] Possible values range from 1 to 200 Hz

[adr] telpul | Queries the set number of pulses in a burst; answer is in the form: [adr] telpul: [data] Possible values range from 1 to 250

[adr] telsep | Queries the separation between the pulses of a burst; answer is in the form: [adr] telsep: [data] Possible values range from 1 to 1000 ms

[adr] teldel | Queries the delay time set for the trigger; answer is in the form: [adr] teldel: [data] Possible values range from 0.01 to 99.99

[adr] telflc | Queries the status of the resettable counter; answer is in the form: [adr] telflc: [data] Possible values are decimal numerals

[adr] telfls | Queries the status of the total counter; answer is in the form: [adr] telfls: [data] Possible values are decimal numerals

[adr] telref | Queries the reference diagram setting; answer is in the form: [adr] telref: [data] Possible values are:
0 = Linear reference diagram
1 = Square reference diagram

[adr] telver | Queries the current firmware version; answer is in the form: [adr] telver: [MaVi-S flash, fv = y.z] “y.z” corresponds to the firmware version number

Total Settings Query
Users can query all settings of a MaVi-S stroboscope via the RS232 interface by using the following command; please note that only one instrument address can be given:

### Command	Function
[adr] telsta | Queries the overall instrument status; answer is in the form: [adr] telsta: [abcdefghijklmn]
Format for total settings queries via the RS232 interface

The letters – which represent positions in the instrument’s answer – take on different values, depending on the instrument’s current status. The following is a key to the definitions of these values:

<table>
<thead>
<tr>
<th>Letter/position</th>
<th>Value</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>Stroboscope lamp is switched on.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Stroboscope lamp is switched off; keys are locked.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Stroboscope lamp is switched off; keys are released.</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>Flash intensity is controlled internally by the instrument.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Flash intensity is controlled externally via the jack J4 – Intensity Ref.</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>No function assigned.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>No function assigned.</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>Burst mode is switched on.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Burst mode is switched off.</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>External trigger is set, using a pulse signal at the BNC jack J3 – Trigger.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>External trigger is set, using a video signal at the BNC jack J3 – Trigger.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>External trigger is set, using a trigger signal from an upstream stroboscope through the jack J1 – RS232 (in).</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>An internal trigger signal is set.</td>
</tr>
<tr>
<td>Letter/position</td>
<td>Value</td>
<td>Meaning</td>
</tr>
<tr>
<td>----------------</td>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>In the field Select, the LED “Intensity” has been chosen.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>In the field Select, the LED “Frequency” has been chosen.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>In the field Select, the LED “Pulse” has been chosen.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>In the field Select, the LED “Separation” has been chosen.</td>
</tr>
<tr>
<td>g</td>
<td>x</td>
<td>Value of the position 0 in the LED display (for the performance characteristic chosen in f)</td>
</tr>
<tr>
<td>h</td>
<td>x</td>
<td>Value of the position 1 in the LED display (for the performance characteristic chosen in f)</td>
</tr>
<tr>
<td>i</td>
<td>x</td>
<td>Value of the position 2 in the LED display (for the performance characteristic chosen in f)</td>
</tr>
<tr>
<td>j</td>
<td>x</td>
<td>Value of the position 3 in the LED display (for the performance characteristic chosen in f)</td>
</tr>
<tr>
<td>k</td>
<td>0</td>
<td>Value in the LED display has no decimal place.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>The decimal place in the LED is after position 1.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>The decimal place in the LED is after position 2.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>The decimal place in the LED is after position 3.</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>Control panel is locked.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>Control panel is not locked.</td>
</tr>
<tr>
<td>m</td>
<td>0</td>
<td>No position has been selected in the LED display.</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>The position 0 has been selected in the LED display.</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>The position 1 has been selected in the LED display.</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>The position 2 has been selected in the LED display.</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>The position 3 has been selected in the LED display.</td>
</tr>
<tr>
<td>n</td>
<td></td>
<td>No function assigned.</td>
</tr>
</tbody>
</table>

A.3.4 Commands to Link to Other Systems
The following set of commands will show MaVi-S users an exact replica of the current function of the keys on the instrument’s control panel. It serves as an excellent basis for generating a graphic user interface, or another link into existing control systems. As with other queries, please note that only one instrument address can be given.

<table>
<thead>
<tr>
<th>Command</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>[adr] key [1] ⇔</td>
<td>Corresponds to pressing the Strobe key once</td>
</tr>
<tr>
<td>[adr] key [2] ⇔</td>
<td>Corresponds to pressing the Intensity Ref. key once</td>
</tr>
<tr>
<td>[adr] key [3] ⇔</td>
<td>Corresponds to pressing the Sensor key once</td>
</tr>
<tr>
<td>[adr] key [4] ⇔</td>
<td>Corresponds to pressing the Burst key once</td>
</tr>
<tr>
<td>[adr] key [5] ⇔</td>
<td>Corresponds to pressing the Trigger key once</td>
</tr>
<tr>
<td>[adr] key [6] ⇔</td>
<td>Corresponds to pressing the Select key once</td>
</tr>
</tbody>
</table>
Command | **Function**
---|---
[adr] key [7] ← | Corresponds to pressing the Decimal Select key once
[adr] key [8] ← | Corresponds to pressing the + key once
[adr] key [9] ← | Corresponds to pressing the – key once

As an alternative to the command [adr] key [6] ←, the four possible settings of the Select key can also be chosen directly, by following this guide:

Command	**Function**
[adr] selint ← | Selects the LED “Intensity,” measured as a percentage
[adr] selfre ← | Selects the LED “Frequency,” measured in Hz
[adr] selpul ← | Selects the LED “Burst Pulses,” expressed as a number
[adr] selsep ← | Selects the LED “Burst Pulse Separation,” measured in ms

Declaration of Conformity

<table>
<thead>
<tr>
<th>CSA Certificate of Compliance Number:</th>
<th>241241</th>
</tr>
</thead>
</table>

Application of CSA Product Directives:

Class No. 8721 05 – Laboratory Equipment – Electrical

Class No. 8721 85 – Electrical Equipment for Laboratory Use – Certified to US Standards

Standards to Which Conformity Is Declared:

CAN/CSA-C22.2 No. 61010-1-12
Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use, Part 1: General Requirements

UL 61010-1
Electrical Equipment for Laboratory Use; Part 1: General Requirements
Page Index

A
Address, setting the instrument’s 33
Adjustment keys 15
Air humidity 29
Altitude 29
Ambient conditions 29
Assembly of stroboscope 9 – 10

B
Back panel 12 – 13
Burst frequency, setting 22
Burst function, setting 22 – 23
Burst key 16

C
Changing
Flashlamp 25 – 26
Fuses 25
Cleaning housing surfaces 28
Climatic conditions 29
Commands for RS232 interface
 Burst mode 35
 General 34
 Linking to other systems 39
 Queries 35 – 38
 Resettable counter 35
 Trigger 34 – 35
Configuration of RS232 interface 33
Conformity, Declaration of 40
Connector for fiber-optic adapter/fiber 11
Control elements
 Back panel 12 – 13
 Front panel 11
Control panel
 Adjustment keys 15
 Burst key 16
 Decimal Select key 15
 Intensity Ref. key 15
 LED display 15
 Locking 17
 Select key 15
 Sensor key 16
 Strobe key 14 – 15
 Trigger key 16
Counters
 Resettable 23 – 24
 Total 23
CSA, applied standards 29

D
Damage to the instrument 2, 9
Decimal Select key 15
Declaration of Conformity 40
Default settings, restoring 24 – 25
Delay, trigger 21
Delivery errors 9
Description, product 9
Dimensions 29
Display, LED 15
Disposal of the instrument 6

E
Electrical safety
 Safety information 7 – 8
 Standards applied 29
EMC, applied standards 29
Emission, EMC standards 29
Error message in LED display (Loc) 17
EU directives, compliance with 40
External control
 Flash intensity 19 – 20
 Trigger 20 – 21
Eye protection and warnings 6 – 7

F
Fiber connector 11
Firmware version 14
Flash counters
 Resettable 23 – 24
 Total 23
Flash frequency, setting 18 – 19
<table>
<thead>
<tr>
<th>Topic</th>
<th>Page(s)</th>
<th>Topic</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flash intensity</td>
<td>19 – 20</td>
<td>Installation</td>
<td>9 – 10</td>
</tr>
<tr>
<td>Controlling externally</td>
<td></td>
<td>Instrument</td>
<td>26</td>
</tr>
<tr>
<td>Controlling internally</td>
<td>20</td>
<td>Networking</td>
<td>10</td>
</tr>
<tr>
<td>Flashlamp</td>
<td></td>
<td>Opening</td>
<td></td>
</tr>
<tr>
<td>Replacing</td>
<td>25 – 26</td>
<td>Power adjustment</td>
<td>27 – 28</td>
</tr>
<tr>
<td>Safety information</td>
<td>6 – 7</td>
<td>Unpacking</td>
<td>9</td>
</tr>
<tr>
<td>Technical specifications</td>
<td>31 – 32</td>
<td>Instrument warning labels</td>
<td>12</td>
</tr>
<tr>
<td>Foil keyboard</td>
<td>14</td>
<td>Intended use</td>
<td>5</td>
</tr>
<tr>
<td>Formats for warnings</td>
<td>5</td>
<td>Intensity</td>
<td></td>
</tr>
<tr>
<td>Frequency limit, setting</td>
<td>17 – 18</td>
<td>Controlling externally</td>
<td>19 – 20</td>
</tr>
<tr>
<td>Frequency, setting</td>
<td></td>
<td>Controlling internally</td>
<td>20</td>
</tr>
<tr>
<td>Burst frequency</td>
<td>22</td>
<td>Intensity Ref. jack</td>
<td>11, 30</td>
</tr>
<tr>
<td>Limit for instrument</td>
<td>17 – 18</td>
<td>Intensity Ref. key</td>
<td>15</td>
</tr>
<tr>
<td>Single flash frequency</td>
<td>18 – 19</td>
<td>Interface commands for RS232</td>
<td></td>
</tr>
<tr>
<td>Front panel</td>
<td>11</td>
<td>Burst mode</td>
<td>35</td>
</tr>
<tr>
<td>Functional testing</td>
<td>16 – 17</td>
<td>General</td>
<td>34</td>
</tr>
<tr>
<td>Fuses</td>
<td></td>
<td>Linking to other systems</td>
<td>39</td>
</tr>
<tr>
<td>Changing</td>
<td>25</td>
<td>Queries</td>
<td>35 – 38</td>
</tr>
<tr>
<td>Holders</td>
<td>13</td>
<td>Resettable counter</td>
<td>35</td>
</tr>
<tr>
<td>Operating requirements</td>
<td>10</td>
<td>Trigger</td>
<td>34 – 35</td>
</tr>
<tr>
<td>Technical specifications</td>
<td>29</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General safety</td>
<td>5 – 6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Handling errors</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Health warnings for users</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holders, fuse</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cleaning</td>
<td>28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety warnings</td>
<td>7, 10, 13,</td>
<td>J1 – RS232 (in) jack, about</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>26</td>
<td>J1 – RS232 specifications</td>
<td>30</td>
</tr>
<tr>
<td>Specifications</td>
<td>29</td>
<td>J2 – RS232 (out) plug, about</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J2 – RS232 specifications</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J3 – Trigger jack, about</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J3 – Trigger specifications</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J4 – Intensity Ref. jack, about</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>J4 – Intensity Ref. specifications</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jacks</td>
<td></td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Identification label</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Image of</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inspection of</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Position on the instrument</td>
<td>12</td>
<td>Adjustment keys</td>
<td>15</td>
</tr>
<tr>
<td>Immunity, EMC standards</td>
<td>29</td>
<td>Burst key</td>
<td>16</td>
</tr>
<tr>
<td>Inspection when unpacking</td>
<td>9</td>
<td>Decimal Select key</td>
<td>15</td>
</tr>
</tbody>
</table>

J

J1 – RS232 (in) jack, about 13
J1 – RS232 specifications 30
J2 – RS232 (out) plug, about 12
J2 – RS232 specifications 31
J3 – Trigger jack, about 11
J3 – Trigger specifications 30
J4 – Intensity Ref. jack, about 11
J4 – Intensity Ref. specifications 30

K

Keyboard 14 – 16
Keys
Adjustment keys 15
Burst key 16
Decimal Select key 15
Intensity Ref. key	15	General safety	5 – 6
Select key	15	Health warnings for users	6
Sensor key	16	Product description	9
Strobe key	14 – 15	Product service	2
Trigger key	16	Product warranty, invalidating	2, 10
Loc error message	17	Protection class	7, 29
Locking the control panel	17	Protection rating	7, 29
Long-term memory settings	14	Pulse interval, setting	22 – 23
LED display	15	(burst function)	
Light aperture	11	Pulse number, setting	22
(burst function)			
M	Qualifications for users	5	
Main power connection	10	Queries via RS232 interface	
Operating requirements	12	Individual settings	35 – 36
Position on the instrument	29	Total settings	36 – 38
Specifications			
Main power switch	13	R	
Main voltage	29	Radiation spectra of flashlamp	31 – 32
Maintenance requirements	9 – 10, 28	Relationship between voltage	19 – 20
Master-slave function	26	and intensity	
Mounting instrument	9 – 10	Relative humidity	29
Networking instruments	26	Replacing	
Number of pulses, setting	22	Flashlamp	25 – 26
(burst function)		Fuses	25
O	Resettable flash counter	23 – 24	
Opening the instrument	10	Restoring default settings	24 – 25
Operating requirements	10	Returning product	2, 9
Operating temperature	29	RS232 (in) jack	13, 30
Overload protection	8	RS232 (out) plug	12, 31
P	S	Safety	
Packaging	9	Electrical safety	7 – 8
Plug, J2 – RS232 (out)	12, 31	Flashlamp safety	6 – 7
Power adjustment	27 – 28	General safety	5 – 6
Power consumption	29	Health warnings for users	6
Precautions		Safety Area Control	8, 17 – 20, 22 – 23
Electrical safety	7 – 8	Saving settings	17
Flashlamp safety	6 – 7	SCHOTT fiber connector	11
Select key
Sensor key
Separation between pulses, setting
(burst function)
Servicing instrument 2
Setting
 Address for the instrument
 Burst frequency
 Burst function
 Flash intensity, external
 Flash intensity, internal
 Frequency limit
 Pulse separation
 (burst function)
 Pulses, number of
 (burst function)
 Single flash frequency
 Trigger delay
 Trigger, external
 Trigger, internal
Signal inputs, specifications
Signal outputs, specifications
Single flash frequency, setting
Sound emission specifications
Sound level
Spectra of flashlamp
Standards applied
 Declaration of Conformity
 Technical specifications
Storage temperature
Strobe key
Stroboscopic lamp
 Switching off
 Switching on
Syntax of RS232 interface commands
 Burst mode
 General
 Linking to other systems
 Queries
 Resettable counter
 Trigger
Technical specifications
 General data
 Signal inputs
 Signal outputs
 Standards applied
 Xenon flashlamps
Testing, functional
Total flash counter
Trademarks
Trigger
 Controlling externally
 Setting internally
 Trigger delay, setting
 Trigger jack
 Trigger key
Unpacking the instrument
Use, intended
User qualifications
Warning labels
Warnings, format for
Warranty, loss of
Weight
Wide range input
Main power connection
Operating requirements
Xenon flashlamp
 Replacing
 Safety information
 Technical specifications