What goals is Schott pursuing with its new activities?

Dr. Ungeheuer: As a technology trendsetter we are developing advanced technologies for mass production. The “Health” Business Segment, with its microarray products and services is aiming to become a reliable partner to the pharmaceutical industry for its research into active ingredients. Our motto: quicker, better, more efficient.

What makes Schott eminently suitable for this partnership?

Dr. Ungeheuer: As a special glass manufacturer we have many years of experience with laboratory glass and pharmaceutical packaging plus extensive coating know-how. At the same time we are now a leading supplier of glass substrates to microarray manufacturers.

Dr. van den Broek: The pharmaceutical industry has to face increasing development costs. It can take up to 15 years for a potential active ingredient to be developed into a drug. The reason for this are long, but prescribed clinical tests. Our future products will help in the preliminary phase to identify with certainty those active ingredients that have a very high degree of probability of passing the tests. This means enormous savings and improves the efficiency of pharmaceutical research.

What benefits does Schott offer its customers?

Dr. van den Broek: The internationalization in the pharmaceutical industry calls for activity on a worldwide scale. The business segment is managed from Mainz – supported by our Research and Development department in Marienborn – and controls international sales and marketing, too. The product development for Health was done at Schott Glass Technologies in Duryea (USA). The pilot production facilities for the coating of substrate glasses is there too. The first phase of series production is planned to take place in the biotech region in Jena, Germany.
What role does “Health” play within Schott?

Dr. Ungeheuer: The “Health” segment covers the production of uncoated and coated flat glass products for DNA microarrays. We are building on these, creating new products and investing in start-up companies that are developing innovative microarray technologies. The know-how obtained through this is being used to set up new businesses of our own, such as the provision of services for pharmaceutical drug discovery.

Dr. van den Broek: “Health” is a new and promising segment and an example of how we are combining existing and new competences, and thus opening up new markets. That is exactly the purpose of our innovation offensive. And with “Schott Slide A” we are now on the very brink of the market launch and in so doing are taking a major step towards setting up the whole business. Speed is one of our success factors: it has taken us less than a year to develop this product to a marketable state.

Who are the first possible customers?

Dr. van den Broek: Initially interest is being shown by the biotechnology industry, manufacturers of microarrays, pharmaceutical companies, universities and institutes. Coated substrates went on display for the first time to a broad specialist audience at the “Eurobiochips” exhibition in Berlin in June. Additionally we are training staff at Schott sales companies around the world to ensure success in major foreign markets too.

Have you received feedback from any interested parties?

Dr. Ungeheuer: Yes, and we are especially proud of the response from a major US laboratory, which rated our products as ‘among the best’. This means that our pilot production has already achieved the high standard of quality of other products in series production.

The interview was conducted by Thilo Horvatitsch

Microarrays: Ingeniously simple

The identification of a DNA sequence by hybridization appears to be relatively straightforward. But is it possible to identify a whole range of DNA sequences in a single step? The trick is to keep track of the known DNA sequences, or targets, being used.

A microarray handles this task in an elegant way: In its simplest form it is a surface with a grid. The grid is formed by the various sorts of probe DNA, rather like a chessboard. However this chessboard can fit several hundred thousand squares in the space of a square centimeter. If hybridization takes place on one square, it is possible to trace back what sequence the probe DNA on this square had and in this way the unknown target DNA can be clearly identified.

An optical process has been established to verify the hybridization. Before hybridization, the unknown DNA sequences (targets) are prepared with a dye which fluoresces when excited by a laser. After the hybridization, all target DNA that has not found a partner on the chip is rinsed off. The remaining bound target DNA produces a signal in the form of a matrix of dots in which each dot represents a different DNA sequence. The more intensively the dots light up, the more probe DNA is bound there, making it possible to determine in one step not only which sequences are present, but also how many of them.

By using two dyes it is possible to compare two different target DNA directly on one array. The signal is a multicolor matrix of dots made up of individual colors in compound tones.