1 Introduction ..2
2 Storage and handling ..3
3 General precautions ..3
4 Reagents required ..3
5 Equipment required ...4
6 Array printing ..4
7 Printing guidelines ...5
8 DNA immobilization ...6
9 Washing and blocking ...6
10 Hybridization ..7
11 Post-Hybridization washing ..9
12 Important information about patents ...10

For Technical Assistance, please contact

Microarray Solutions
SCHOTT Jená® Glas GmbH
Otto-Schott-Straße 13
07745 Jena
Germany

Phone: +49-(0)3641-681-91969
Fax: +49-(0)3641-681-970
E-Mail: coatedsubstrate@schott.com

Additional information and online-ordering at:
www.schott.com/nexterion

This document is electronically approved and without signature, the persons taken part in the release procedure, valid.
Authorized expressions from the data processing system are not invalid in principle

SCHOTT JENÁ GLAS GmbH, HCF-S
1 Introduction

Nexterion® Slide A+ MPX 16 is developed for fast and efficient immobilization of DNA molecules onto activated glass slides that permit superior reproducibility of microarray data and higher sensitivity. The slide is manufactured using the highest quality glass (standard dimensions of 75.6 mm x 25.0 mm x 1.0 mm) and laser cutting technologies, to obtain defect and particle free slide surfaces and excellent dimensional tolerances. Nexterion® Slide A+ MPX 16 is cleaned and coated in cleanroom atmosphere and a strict process control in all fabrication steps ensures excellent coating uniformity and batch-to-batch reproducibility. The amino surface coating allows for the efficient covalent binding of molecules, such as PCR-products, cDNA molecules and longer, synthetic oligonucleotides (size ≥ 50 mer). The uniform and ultrahydrophobic patterning material separates the slide surface into 16 individually addressable subarray chambers allowing multiplexed microarray analysis. Nexterion® Slide A+ MPX 16 is delivered together with superstructures and sealing strips to support excellent sample mixing and to minimize cross contamination as well as sample evaporation during the hybridization step. Additionally re-usable microtiterplate-size-trays for automated high-throughput processing of Nexterion® Slide A+ MPX 16 are available separately. Each MTP-tray can hold up to four slides.
2 Storage and handling

1. Store the packaged substrates at room temperature (20-25°C) and use prior to the expiration date.
2. Open and use the substrates in a clean environment to avoid particle build-up on the printing surface.
3. Avoid direct contact with the printing surface to minimize contamination and abrasion of the coated surface.
4. Once the package is opened, substrates should be used within 8 weeks if stored under inert condition inside a desiccator and protected from light at room temperature.
5. Only one side of each slide is patterned and must therefore be used (readable "SCHOTT Nexterion"). This inscription can also be used for the well orientation

3 General precautions

1. The protocols contained in this document are meant to be general guidelines only and some optimization may be required depending on the application and sample being used.
2. Refer to manufacturer supplied Material Safety and Data Sheets (MSDS) for proper handling and disposal of all chemicals.
3. Nexterion® Slide A+ MPX 16 is for research use only, not for in vitro diagnostic use.

4 Reagents required

1. Deionized water (dH$_2$O)
2. 2x Nexterion® Spot Solution or 3x SSC, 3x SSC containing 1.5M betaine or 50% DMSO
3. Hybridization Buffer Nexterion® Hyb (formamide-free) or 3-5x SSC + 0.1% SDS with or without competitor DNA and formamide
4. Saline sodium citrate (20x SSC)- Ambion 9673
5. Sodium dodecyl sulfate (SDS)- Fisher BP166-500 or 10% SDS solution for washing (10 g sodium dodecyl sulfate in 100 ml dH$_2$O, dissolve at room temperature)
6. 0.1% SDS (10ml 10 % SDS solution in 1000 ml dH$_2$O)
7. Amino Blocking Solution (5 g succinic anhydride + 315 ml n-methylpyrrolidone + 35 ml 0.2 M sodium-borate pH 8. Add sodium-borate freshly before use.)
8. Pre-Hybridization Buffer (3-5x SSC, containing 0.1% SDS and 0.1 mg/ml BSA) or alternatively 25 ml Nexterion Hyb + 25 ml dH$_2$O+ 500 mg BSA (volume for 5 slides)
5 Equipment required

1. UV cross-linker (Stratagene Stratalinker).
2. Heat block capable of heating to 95°C.
3. Heated water bath.
4. Humidified hybridization chamber (like GeneMachines HybChamber).
5. Centrifuge with slide holders or compressed nitrogen gas for drying slides.
6. Coplin jars (VWR 25457-006) or slide dish and rack combo (Fisher 900200) for washing slides.

6 Array printing

1. Dissolve oligonucleotide probe or PCR product in the appropriate spotting solution to obtain the recommended final probe concentration:

<table>
<thead>
<tr>
<th>DNA Probes</th>
<th>Final Spotting Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oligonucleotides</td>
<td>2 - 20 µM</td>
</tr>
<tr>
<td>PCR Products</td>
<td>0.05 - 0.5 µM (approx. 0.1 – 1 mg/ml)</td>
</tr>
</tbody>
</table>

Spotting solutions commonly used for Nexterion Slide A+ MPX 16:

<table>
<thead>
<tr>
<th>Spotting Solution</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% DMSO</td>
<td>larger spot size, prevents evaporation problems during long spotting runs</td>
</tr>
<tr>
<td>3x SSC</td>
<td>smaller spots, standard aqueous spotting solution</td>
</tr>
<tr>
<td>3x SSC + 1.5 M betaine</td>
<td>larger spots, prevents evaporation problems during long spotting runs, very homogeneous spots</td>
</tr>
<tr>
<td>Nexterion® Spot</td>
<td>smaller spots, phosphate buffer based solution</td>
</tr>
</tbody>
</table>

2. Transfer an appropriate volume of probes to a microtiter plate.

Note: DNA-probes in Nexterion spotting solution can be stored at -20°C until spotting. If the probe solution shows a white precipitation prior to spotting, heat the probes to 50 to 80°C for 2 min and avoid any change of concentration by condensation.
3. Setup the arrayer according to the manufacturer’s recommendations. If you were previously using slides that were thicker than 1.0 mm, for optimal spotting you may need to re-calibrate the distance between the slide surface and the spotting pins.

4. Print substrates at 40-50% relative humidity at 20 to 25°C.

7 Printing guidelines

Nexterion® Slide A+ MPX 16 is compatible with all microarray printing or spotting methods, including contact and non-contact printing technologies. The following table displays the maximum number of probes per subarray well for Nexterion® Slide A+ MPX 16 based on theoretical calculations using pitch and type of source plate. The color-coding in the table indicates, for each pin configuration, the number of pins used for intra-well printing.

Detailed printing guidelines are available online at:
USA/Canada/Mexico: www.us.schott.com/nexterion
Europe/Asia – Pacific: www.schott.com/nexterion

<table>
<thead>
<tr>
<th>Pin Configurations</th>
<th>96 Well Sourceplate</th>
<th>384 Well Sourceplate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1 x 1-2-4) (2 x 1-2-4)</td>
<td>(1 x 1) (2 x 2-4-8)</td>
</tr>
<tr>
<td>100</td>
<td>3364</td>
<td>3364</td>
</tr>
<tr>
<td>150</td>
<td>1444</td>
<td>1444</td>
</tr>
<tr>
<td>200</td>
<td>784</td>
<td>784</td>
</tr>
<tr>
<td>250</td>
<td>484</td>
<td>484</td>
</tr>
<tr>
<td>300</td>
<td>324</td>
<td>324</td>
</tr>
<tr>
<td>350</td>
<td>256</td>
<td>256</td>
</tr>
<tr>
<td>400</td>
<td>169</td>
<td>169</td>
</tr>
<tr>
<td>450</td>
<td>144</td>
<td>144</td>
</tr>
<tr>
<td>500</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Security spacing is 300µm + pitch from well borders.

This document is electronically approved and without signature, the persons taken part in the release procedure, valid.
Authorized expressions from the data processing system are not invalid in principle

SCHOTT JENA® GLAS GmbH, HCF-S
8 DNA immobilization

1. For covalent binding of DNA-probes on the slide surface after spotting it is necessary to UV-cross link the slides at 250 mJ.
2. Incubate the slides at room temperature for 12 h (e.g. store slides over night).
3. Proceed to Washing

Note: After spotting and immobilization, the arrays can be used immediately or stored under dry, dark conditions at room temperature for several month. The washing steps after immobilization should be carried out immediately before hybridization.

9 Washing and blocking

After immobilization it is important to remove unbound DNA-molecules and buffer substances from the slides by extensive washing to avoid any interference with subsequent hybridization experiments. To avoid bleeding of the spots it is important to perform the washing steps very quickly by moving the slides (slide holder) up and down in the rinsing solution rather then using a shaker. The blocking is either done by prehybridization with BSA or by reaction of the amino-groups with succinic anhydride.

Protocol with prehybridization, duration 50 min:
1. 1 x 10 to 20 sec in 0.1% SDS at room temperature
2. 1 x 10 to 20 sec in diH₂O at room temperature
3. (Denaturing step for arrays spotted with PCR-probes)
 1 x 3 min in boiling diH₂O
4. 1 x 45 min in prehybridization buffer at 42°C
5. 1 x 10 to 20 sec in diH₂O at room temperature
6. Dry the arrays in an oil-free air or nitrogen stream or by centrifugation (200 x g for 5 min) to avoid any water stains on the slide surface.

Alternatively:

Protocol with chemical blocking, duration 20 min:
1. 1 x 15 min in Amino Blocking Solution at room temperature
2. 1 x 10 to 20 sec in 0.1% SDS at room temperature
3. 1 x 10 to 20 sec in diH₂O at room temperature
4. (Denaturing step for arrays spotted with PCR-probes)
 1 x 3 min in boiling diH₂O
5. Dry the arrays in an oil-free air or nitrogen stream or by centrifugation (200 x g for 5 min) to avoid any water stains on the slide surface.
10 Hybridization

1. Remove the protective back covering from the superstructure by hand or by using a forceps.

2. Apply the superstructure on the slide a) from top or b) by inverting the slide on the superstructure, followed by c) firmly securing the superstructure on the slide.

 a) Application from top
 b) Application in inverted position
 c) Securing the superstructure

3. Re-suspend the dried, labeled target to be applied to the array in Nexterion Hyb. In case the target is already dissolved in a different buffer or in water, the sample can also be diluted in Nexterion Hyb to get at least 90% (v/v) buffer in the final hybridization solution.

 Note: a) At least 7.5 pmol of each target in 30µl of hybridization buffer per well is recommended.
4. Denature the suspended target by heating at 95°C for 3 min in a water-filled well of a heat block, perform a quick spin in a microcentrifuge, then pipette the appropriate volume onto the array surface of a blocked slide under the coverslip or inside a hybridization station.

Caution: If the sample cannot be applied immediately after denaturation, then place it in a 42°C water-filled well of a heat block. Work rapidly when adding the target; use of filter tips is recommended.

a) Addition of target to a single slide

![Image of single slide addition](image1)

b) Addition of target to multiple slides in a tray

![Image of multiple slide addition](image2)

5. Seal the wells immediately with the supplied sealing strips, as shown below, ensuring that the seal makes good contact with the superstructure.

![Image of sealed wells](image3)

6. Hybridize the slides overnight at the appropriate temperature depending on the hybridization buffer on an orbital shaker at 100 rpm. Protect the slides by covering with Aluminium foil or other means.

![Image of hybridization](image4)
11 Post-Hybridization washing

Caution: Do not allow slides to dry between washes, and protect from light as much as possible. Never wash the slides with diH₂O after hybridization.

Note: The solutions recommended below for washing are a general guideline; your application may require alternative stringency washes.

1. Aspirate the target from the wells using a multi-channel pipette and immediately fill the wells with 100 µl of 2x SSC. Aspirate the wash solution and fill the wells with fresh 2x SSC. Repeat this procedure 3 times.
2. Remove the superstructure immediately and place the slides into a slide rack.

a) Aspiration using a multi-channel
b) Removal of superstructure

3. Immerse the slide rack in a dish containing 2x SSC and 0.2% SDS. Wash in the above solution 1 x 10 min at room temperature.
4. Wash 1 x 10 min in 2x SSC.
5. Wash 1 x 10 min in 0.2x SSC at room temperature.

Note: The volume of the washing solution should be at least 250 ml for 5 Slides.

6. Dry the array in an oil free air or nitrogen stream or by centrifugation (200 x g for 5 min) to avoid water stains on the slide surface.
7. Protect the array from light, dust and abrasion of the array surface, until ready for scanning.
12 Important information about patents

Using arrays based on SCHOTT Nexterion products for dual color analysis on a single array in which at least two different samples are labeled with at least two different labels may require a license under one of the following patents: U.S. patent nos. 5,770,358 or 5,800,992 or 6,225,625 and U.S. patent no. 5,830,645. Manufacturing and use of probe arrays may require a license under the following patents: U.S. patent no. 6,040,138 or 5,445,934 or 5,744,305 and under the following patents owned by Oxford Gene Technology Ltd. (“OGT”): European patent no. EP 0,373,203, U.S. patent nos. 5,700,637 and 6,054,270 and Japanese patent nos. 3393528 and 3386391 (“The OGT patents”). Other patents may apply. The purchase of Nexterion® products does not convey any license under any of the OGT patents or any of the other patents referred to. For all applications SCHOTT North America Inc. and SCHOTT JENA® Glas GmbH make no representation or warranty that the practice of its technology and products or any improvement will not infringe or violate any domestic or foreign patent of any third party. Before making or using any oligonucleotide arrays you should contact OGT to discuss a licence. To inquire about licensing under the OGT patents, please contact OGT at licensing@ogt.co.uk.