SCHOTT NEXTREMA®
Glass-ceramics engineered and designed for extreme conditions

NEXTREMA® is a unique family of glass-ceramics. This material combines the glossy appearance of glass with exceptional thermal, chemical, optical and mechanical properties like an attractive bending strength of 100 – 165 MPa for materials with a thickness of around 4 mm. With a thermal resistance of up to 950 °C or for specific applications even higher, combined with a thermal shock resistance of 600 – 820 °C, it ensures a reliable material performance even under extreme temperature conditions. Our six unique glass-ceramic types combined with the wide range of sizes and thicknesses varying from 2 mm to 6 mm (> 6 mm on request) will open up new possibilities in product design and performance. The unique transmission spectra provide new ideas for combining innovative infrared heating functionalities with attractive lighting effects. The versatility of this material will surely impress you.

Key properties

- Very low coefficient of linear thermal expansion
- Excellent temperature and thermal shock resistance
- High transmission in infrared range and unique visible light transmission profiles
- Excellent chemical resistance
- High mechanical strength
- Homogenously colored & no discoloration over time

The six glass-ceramic types

1 | NEXTREMA® tinted
2 | NEXTREMA® translucent bluegrey
3 | NEXTREMA® opaque grey
4 | NEXTREMA® transparent
5 | NEXTREMA® translucent white
6 | NEXTREMA® opaque white

This graph is based on data from individual measurements. Deviations may result from manufacturing process. Internal transmissions graph of different ceramization status with sample thickness of approximately 4 mm.
SCHOTT NEXTREMA®
Glass-ceramics engineered and designed for extreme conditions

Standards forms of delivery

<table>
<thead>
<tr>
<th>Thickness</th>
<th>Standard length Min. - Max.</th>
<th>Standard width Min. - Max.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 mm</td>
<td>50 – 1,915 mm</td>
<td>50 – 860 mm</td>
</tr>
<tr>
<td>3 mm</td>
<td>50 – 1,930 mm</td>
<td>50 – 1,075 mm</td>
</tr>
<tr>
<td>4 mm</td>
<td>50 – 1,930 mm</td>
<td>50 – 1,075 mm</td>
</tr>
<tr>
<td>5 mm</td>
<td>50 – 1,930 mm</td>
<td>50 – 1,075 mm</td>
</tr>
<tr>
<td>6 mm</td>
<td>50 – 1,930 mm</td>
<td>50 – 1,060 mm</td>
</tr>
<tr>
<td>≥ 8 mm</td>
<td>50 – on request</td>
<td>50 – 960 mm</td>
</tr>
</tbody>
</table>

Overview of dimensions: Cut-to-size panels

- *Temperature for a specific electric volume resistivity of 10^8 Ω·cm.*
- All information is subject to change without prior notice.
- For detailed material properties please see material type specific datasheets.

Thermal characteristics

CTE in different temperature ranges

- \(\alpha_{(-50 \, ^\circ C; \, 100 \, ^\circ C)} \): \(-0.8 - 0.6 \times 10^{-6} \, K^{-1} \)
- \(\alpha_{(0 \, ^\circ C; \, 50 \, ^\circ C)} \): \(-0.8 - 0.6 \times 10^{-6} \, K^{-1} \)
- \(\alpha_{(20 \, ^\circ C; \, 300 \, ^\circ C)} \): \(-0.4 - 0.9 \times 10^{-6} \, K^{-1} \)
- \(\alpha_{(300 \, ^\circ C; \, 700 \, ^\circ C)} \): \(0.1 - 1.6 \times 10^{-6} \, K^{-1} \)

Thermal conductivity

- \(\lambda_{(90 \, ^\circ C)} \): \(1.5 - 1.7 \, W / (m \times K) \)

Specific heat capacity

- \(C_p_{(20-100 \, ^\circ C)} \): \(0.80 - 0.85 \, J / (g \times K) \)

MTG 400 – 800 K

Resistance of the material to temperature differences between a defined hot zone and cold edge of room temperature, without cracking due to thermal stress.

- **TSR 600 – 820 °C (1,112 – 1,508 °F)**
 Resistance of the material to thermal shock when the hot material is splashed with cold water at room temperature, without cracking due to thermal stress.

Mechanical characteristics (at room temperature)

- Density: \(\rho \approx 2.5 – 2.6 \, g/cm^3 \)
- Modulus of elasticity (ASTM C-1259): \(E \approx 84 – 95 \times 10^3 \, MPa \)
- Poisson’s ratio (ASTM C-1259): \(\mu \approx 0.25 – 0.26 \)
- Knoop hardness (ISO 9385): \(H_K_{0.1/20} \approx 570 – 600 \)
- Bending strength (DIN EN 1288, Part 5, R45): \(\sigma_{bb} \approx 100 – 165 \, MPa \)

Electrical characteristics

Specific electrical volume resistance (DIN 52326)

- \(\log p_{(250 \, ^\circ C)} \): \(\Omega \cdot cm \)
 - \(6.6 – 7.2 \)
- \(\log p_{(350 \, ^\circ C)} \): \(\Omega \cdot cm \)
 - \(5.2 – 5.7 \)
- \(*t_{1000} \): \(\circ C \)
 - \(175 – 207 \)

Temperature for a specific electric volume resistivity of \(10^8 \, \Omega \cdot cm \).

Bent panels
- Formats of bent panels on request.

Surface characteristics

- Porosity (ISO 9385): \(0 \, %\)
- Material 724-3 (t = 4 mm): \(R_a \leq 0.20 \, \mu m\) \(R_{ms} \leq 0.25 \, \mu m\)

Chemical characteristics

The chemical resistance of NEXTREMA® is more extensive than that of most other comparable materials.

- Acid resistance (DIN 12116): \(S \, 1 – 2\)
- Alkaline resistance (ISO 695): \(A \, 1 – 2\)
- Hydrolytic class (DIN ISO 719): \(HGB \, 1\)

All materials fulfill the terms of RoHS without any concerns.

Mechanical characteristics (at room temperature)

- Density: \(\rho \approx 2.5 – 2.6 \, g/cm^3 \)
- Modulus of elasticity (ASTM C-1259): \(E \approx 84 – 95 \times 10^3 \, MPa \)
- Poisson’s ratio (ASTM C-1259): \(\mu \approx 0.25 – 0.26 \)
- Knoop hardness (ISO 9385): \(H_K_{0.1/20} \approx 570 – 600 \)
- Bending strength (DIN EN 1288, Part 5, R45): \(\sigma_{bb} \approx 100 – 165 \, MPa \)

All information is subject to change without prior notice.

SCHOTT North America, Inc
5530 Shepherdsville Road
Louisville, KY 40228
USA
Phone (502)657-4417
info.nextrema@us.schott.com
www.us.schott.com/nextrema